knrt.net
当前位置:首页 >> 大学高数不定积分求解∫E^x CosxDx >>

大学高数不定积分求解∫E^x CosxDx

设I=∫e^x cosxdx =∫cosxde^x =e^xcosx-∫e^xdcosx =e^xcosx+∫e^xsinxdx =e^xcosx+∫sinxde^x =e^xcosx+sinxe^x-∫e^xdsinx =e^xcosx+e^xsinx-∫e^xcosx dx =e^xcosx+e^xsinx-I 2I=e^xcosx+e^xsinx 所以 原式=1/2 (e^xcosx+e^xsinx)+C

如图

使用分部积分法两次即可,步骤如下: ∫e^(-x)cosxdx=-e^(-x)cosx-∫[-e^(-x)(cosx)']dx=-e^(-x)cosx+∫[-e^(-x)sinx]dx =-e^(-x)cosx+e^(-x)sinx-∫e^(-x)(sinx)'dx 所以∫e^(-x)cosxdx=1/2[-e^(-x)cosx+e^(-x)sinx]+C

用【分部积分法】∫ x^2 cosx dx= ∫ x^2 dsinx= x^2 sinx - ∫ sinx dx^2= x^2 sinx - 2∫ x sinx dx= x^2 sinx - 2∫ x d(-cosx)= x^2 sinx + 2x cosx - 2∫ cosx dx= x^2 sinx + 2x cosx - 2sinx + C

cosx>0 原式=∫cosxdx=sinx+c1 cosx≤0 原式=-∫cosxdx=-sinx+c2

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) si...

这个没有初等函数形式的积分。

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) sinx...

边烽寂寂尽收兵,宫树苍苍静掩扃。戎羯归心如内地, 天狼无角比凡星。新成丽句开缄后,便入清歌满坐听。

∫(e^x-e^-x)/cosx dx =∫e^x/cosx - ∫e^-x/cosx dx =∫e^x*secx dx - ∫e^-x*secx dx 这2个的不定积分都不能解出,所以这题积分无解。

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com