knrt.net
当前位置:首页 >> 二阶常微分方程通解 >>

二阶常微分方程通解

较常用的几个: 1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+By'+Cy=a sinx + bcosx 特解 y=msinx+nsinx 3、Ay''+By'+Cy= mx+n 特解 y=ax 二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I...

较常用的几个: 1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+By'+Cy=a sinx + bcosx 特解 y=msinx+nsinx 3、Ay''+By'+Cy= mx+n 特解 y=ax 拓展资料: 其他解法 ①通解=非齐次方程特解+齐次方程通解 对二阶常系数线性非齐次微分方程形式ay''+by'...

你可以按照这个去做就可以了。如果你想具体的了解这些是怎么来的,你可能要去看书本上的知识。

若函数族F是二阶常系数微分方程a*y''+b*y'+c*y=0的通解,任取F中的一个特解f,取其定义域上互异的三点u,v,w使如下3阶行列式非零: f''(u) f'(u) f(u) f''(v) f'(v) f(v) f''(w) f'(w) f(w) 则从方程组 f''(u)*a+f'(u)*b+f(u)*c=0 f''(v)*a+f'(v)...

一、理论解,用dsolve函数(在command window 中输入doc dsolve可以查看帮助) 示例: 代码: [x,y]=dsolve('D2x+2*Dx=x+2*y-exp(-t)','Dy=4*x+3*y+4*exp(-t)') 二、数值解,用ode45,或ode23, ode15s其他函数。(在command window 中输入doc od...

y'' - 2y' + 5y = 0, 设y = e^[f(x)],则 y' = e^[f(x)]*f'(x), y''= e^[f(x)]*[f'(x)]^2 + e^[f(x)]*f''(x). 0 = y'' - 2y' + 5y = e^[f(x)]*[f'(x)]^2 + e^[f(x)]*f''(x) - 2e^[f(x)]*f'(x) + 5e^[f(x)], 0 = [f'(x)]^2 + f''(x) - 2f'(x) + 5,...

标准形式 y″+py′+qy=0 特征方程 r^2+pr+q=0 通解 1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x) 2.两根相等的实根:y=(C1+C2x)e^(r1x) 3.共轭复根r=α+iβ:y=e^(αx)*(C1cosβx+C2sinβx) 标准形式 y''+p(x)y'+q(x)y=f(x) 解法 通解=非齐次方程特解+齐...

非齐次方程的求解公式

你好、很高兴回答你的问题 对于高阶的微分方程, 考纲里只规定常系数的, 变系数的你放心,数几都不会考到。

为了理解这里,最好的方式是考虑具体数字。 比如,y''+2y'+1=0.我们可将其写作 (dx+1)(dx+1)y=0,其中dx表示对x求微分,而非微分元素(这里不方便输入分式的微分符号) 注意公式:exp(x)*(dx+1)f=dx(exp(x)f)=[exp(x)f(x)]' 两次使用这个公式,可得:...

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com