knrt.net
当前位置:首页 >> 求不定积分S E^%xCosxDx >>

求不定积分S E^%xCosxDx

解:此题可用分步积分进行解答 ∫ e^(-x)cosxdx = -e^(-x)cosx - ∫ e^(-x)sinxdx = -e^(-x)cosx + e^(-x)sinx -∫ e^(-x)cosxdx 即 原式=[ -e^(-x)cosx + e^(-x)sinx ]/2 =(sinx-cosx)*e^(-x)/2 祝您学习愉快

令t=e^x 则 x=lnt dx=1/t dt 原式=∫ (t tan t)*(1/t)dt =∫tantdt =-ln|cost|+C =-ln| cose^x |+C 很高兴为您解答,祝你学习进步>数学好玩】团队为您答题。 有不明白的可以追问!如果您认可我的回答。 请点击下面的【选为满意回答】按钮,谢谢!

1.原式=∫sin^3(x)d(sinx) =sin^4(x)/4+C 2.原式=∫x^2dx+∫e^2dx =x^3/3+e^2*x+C

分部积分 ∫e^xsinxdx=∫sinxde^x =sinx*e^x-∫e^xdsinx =sinx*e^x-∫e^xcosxdx =sinx*e^x-∫cosxde^x =sinx*e^x-cosx*e^x+∫e^xdcosx =sinx*e^x-cosx*e^x-∫e^xsinxdx 所以2∫e^xsinxdx=sinx*e^x-cosx*e^x 所以∫e^xsinxdx=e^x(sinx-cosx)/2

求下列不定积分 1。∫[xe^(-x)]dx=-∫xde^(-x)=-[xe^(-x)-∫e^(-x)dx]=-[xe^(-x)+∫e^(-x)d(-x)]=-(x+1)e^(-x)+C 2。∫x²e^(-x)dx=-∫x²de^(-x)=-[x²e^(-x)+2∫xe^(-x)dx]=-x²e^(-x)-2(x+1)e^(-x)+C=-(x²+2x+2)e^(-x)+C 3。∫l...

用【分部积分法】∫ x^2 cosx dx= ∫ x^2 dsinx= x^2 sinx - ∫ sinx dx^2= x^2 sinx - 2∫ x sinx dx= x^2 sinx - 2∫ x d(-cosx)= x^2 sinx + 2x cosx - 2∫ cosx dx= x^2 sinx + 2x cosx - 2sinx + C

用分部积分法,设u=e^x,v'=cosx,u'=e^x,v=sinx,原式=e^xsinx-∫e^xsinxdx,u=e^x,v'=sinx,u'=e^x,v=-cosx,原式=e^xsinx-(-cosx*e^x+∫e^xcosxdx)=e^xsinx+cosx*e^x-∫e^xcosxdx,2∫e^xcosxdx=e^xsinx+cosx*e^x∴∫e^xcosxdx=(e^xsinx+co...

楼上三位,一致对e^x情有独钟,他们都是对的。 通常,这类题既有e^x又有sinx或cosx的积分题,一般的解法是: 1、选定e^x,或选定sinx、cosx,就得“从一而终”,用分部积分的方法计算, 中途不得更换。否则,一定解不出来; 2、积分过程中,连续两...

解:此题可用分步积分进行解答 ∫ e^(-x)cosxdx = -e^(-x)cosx - ∫ e^(-x)sinxdx = -e^(-x)cosx + e^(-x)sinx -∫ e^(-x)cosxdx 即: 原式=[ -e^(-x)cosx + e^(-x)sinx ]/2 =(sinx-cosx)*e^(-x)/2

用分部积分法, 设u=e^x,v'=cosx, u'=e^x,v=sinx, 原式=e^xsinx-∫e^xsinxdx, u=e^x,v'=sinx, u'=e^x,v=-cosx, 原式=e^xsinx-(-cosx*e^x+∫e^xcosxdx) =e^xsinx+cosx*e^x-∫e^xcosxdx, 2∫e^xcosxdx=e^xsinx+cosx*e^x ∴∫e^xcosxdx=(e^xsinx+cosx*e^x...

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com