knrt.net
当前位置:首页 >> 谁知道不定积分∫(E^x)CosxDx是多少啊?用几次分部... >>

谁知道不定积分∫(E^x)CosxDx是多少啊?用几次分部...

循环积分法两次搞定。意思是在用分部积分的时候等式左右两侧会出两个∫(e^x)cosxdx,移到等式同一侧,求解2 ∫(e^x)cosxdx即可。过程实在简单,你自己随便划两笔就出来了。

如图

设I=∫e^x cosxdx =∫cosxde^x =e^xcosx-∫e^xdcosx =e^xcosx+∫e^xsinxdx =e^xcosx+∫sinxde^x =e^xcosx+sinxe^x-∫e^xdsinx =e^xcosx+e^xsinx-∫e^xcosx dx =e^xcosx+e^xsinx-I 2I=e^xcosx+e^xsinx 所以 原式=1/2 (e^xcosx+e^xsinx)+C

使用分部积分法两次即可,步骤如下: ∫e^(-x)cosxdx=-e^(-x)cosx-∫[-e^(-x)(cosx)']dx=-e^(-x)cosx+∫[-e^(-x)sinx]dx =-e^(-x)cosx+e^(-x)sinx-∫e^(-x)(sinx)'dx 所以∫e^(-x)cosxdx=1/2[-e^(-x)cosx+e^(-x)sinx]+C

答:(x² - 2)sinx + 2xcosx + C ∫ x²cosx dx = ∫ x² d(sinx),分部积分 = x²sinx - ∫ sinx * 2x dx = x²sinx - 2∫ x d(-cosx),分部积分 = x²sinx + 2xcosx - 2∫ cosx dx = x²sinx + 2xcosx - 2sinx + C = (...

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) sinx...

因为cosxdx=d(sinx)呀

原式=∫xdsinx =xsinx-∫sinxdx =xsinx+cosx+C

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com