knrt.net
当前位置:首页 >> E^Cosx的积分是多少 >>

E^Cosx的积分是多少

用分部积分法, 设u=e^x,v'=cosx, u'=e^x,v=sinx, 原式=e^xsinx-∫e^xsinxdx, u=e^x,v'=sinx, u'=e^x,v=-cosx, 原式=e^xsinx-(-cosx*e^x+∫e^xcosxdx) =e^xsinx+cosx*e^x-∫e^xcosxdx, 2∫e^xcosxdx=e^xsinx+cosx*e^x ∴∫e^xcosxdx=(e^xsinx+cosx*e^x...

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) si...

设I=∫e^x cosxdx =∫cosxde^x =e^xcosx-∫e^xdcosx =e^xcosx+∫e^xsinxdx =e^xcosx+∫sinxde^x =e^xcosx+sinxe^x-∫e^xdsinx =e^xcosx+e^xsinx-∫e^xcosx dx =e^xcosx+e^xsinx-I 2I=e^xcosx+e^xsinx 所以 原式=1/2 (e^xcosx+e^xsinx)+C

cosx -sinx -cosx e^2x 2e^2x 4e^2x 原式=2e^2xcosx+4e^2x·sinx -4∫e^2xcosxdx 所以 5∫e^2xcosxdx=2e^2xcosx+4e^2x·sinx+5c ∫e^2xcosxdx=2/5e^2xcosx+4/5e^2x·sinx+c

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) sinx...

cosx*e^x的原函数过程 设I=∫cosx*e^xdx 则: I=∫cosx*e^xdx =∫cosxde^x =cosxe^x-∫e^xdcosx (分部积分法) =cosxe^x+∫sinxe^xdx =cosxe^x+∫sinxde^x =cosxe^x+(e^xsinx-∫e^xdsinx) (分部积分法) =cosxe^x+e^xsinx-∫e^xdsinx =cosxe^x+e^xsinx-∫...

使用分部积分法两次即可,步骤如下: ∫e^(-x)cosxdx=-e^(-x)cosx-∫[-e^(-x)(cosx)']dx=-e^(-x)cosx+∫[-e^(-x)sinx]dx =-e^(-x)cosx+e^(-x)sinx-∫e^(-x)(sinx)'dx 所以∫e^(-x)cosxdx=1/2[-e^(-x)cosx+e^(-x)sinx]+C

点评:这道题只需注意到cosx是sinx的导数即可求解,复合函数的求导法则。

循环积分法两次搞定。意思是在用分部积分的时候等式左右两侧会出两个∫(e^x)cosxdx,移到等式同一侧,求解2 ∫(e^x)cosxdx即可。过程实在简单,你自己随便划两笔就出来了。

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com