knrt.net
当前位置:首页 >> sin^4x/Cos^2x的积分 >>

sin^4x/Cos^2x的积分

∫1/(sin^4xcos^4x)dx =∫16/sin^4(2x)dx =∫16csc^4(2x)

(sin∧4xcos∧2x)的原函数是 ∫(sin∧4xcos∧2x)dx =∫[sin^2x(

不是d(cos2x),二是d(cos²x) 因为(cos²x)

=(cos^2x+sin^2x)^2-2sin^2xcos^2x =1-sin2x/2

化简一步 y=(sinx+cosx)-2sinxcosx =1-(1/2)(2sinxcosx) =

f(x)=sin^4x-sin^2x+1 =(sin^2x-1/2)^2+3/4 0<=s

y=(cosx)^4+2sinxcosx-(sinx)^4 =[(cosx)^2+(sinx)^2

f(x)=cos^4x-2sinxcosx-sin^4x =(cos^2x+sin^2x)(cos

网站首页 | 网站地图
All rights reserved Powered by www.knrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com